报告题目:Disjoint hypercyclic and supercyclic composition operators on discrete weighted Banach spaces
报告人:周泽华
报告时间:6月28日(星期五)10:00-11:00
报告地点:理学院1-301
英文摘要:Linear dynamics is a young and rapidly evolving branch of functional analysis, which is mainly concerned with the behaviour of iterates of continuous linear operators on separable infinite dimensional topological vector spaces. Such as, hypercyclicity, supercyclicity, chaoticity, transitivity and so on. In this talk, we characterize the disjoint hypercyclic and disjoint supercyclic composition operators on the little weighted Banach space L^0_\mu(T) defined on an unbounded, locally finite metric space T with a distinguished element. We give an explanation of the conditions which are needed and list some examples simultaneously.
报告人介绍:周泽华,教授,博士生导师。曾任天津大学数学系主任,教育部大学数学课程教学指导委员会委员;是“数学与应用数学”国家级特色专业负责人,《数学分析》国家级一流课程负责人。研究方向为多复变与复几何、函数空间与算子理论、线性动力系统,先后主持国家自然科学基金项目7项,在《Math. Z》《Michigan Math. J.》《Indiana Univ. Math. J.》《Illinois J. Math.》《C. R. Math. Acad. Sci. Paris》《Proc. Amer. Math. Soc.》等期刊发表论文150余篇。
中国·浙江 湖州市二环东路759号(313000) 版权所有:9I果冻制作厂